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Segmentation of Anatomical Structures
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Abstract— Accurate segmentation of anatomical struc-
tures is vital for medical image analysis. The state-of-the-
art accuracy is typically achieved by supervised learning
methods, where gathering the requisite expert-labeled im-
age annotations in a scalable manner remains a main ob-
stacle. Therefore, annotation-efficient methods that permit
to produce accurate anatomical structure segmentation are
highly desirable. In this work, we present Contour Trans-
former Network (CTN), a one-shot anatomy segmentation
method with a naturally built-in human-in-the-loop mech-
anism. We formulate anatomy segmentation as a contour
evolution process and model the evolution behavior by
graph convolutional networks (GCNs). Training the CTN
model requires only one labeled image exemplar and lever-
ages additional unlabeled data through newly introduced
loss functions that measure the global shape and appear-
ance consistency of contours. On segmentation tasks of
four different anatomies, we demonstrate that our one-shot
learning method significantly outperforms non-learning-
based methods and performs competitively to the state-of-
the-art fully supervised deep learning methods. With mini-
mal human-in-the-loop editing feedback, the segmentation
performance can be further improved to surpass the fully
supervised methods.

Index Terms— Image Segmentation, One-shot Segmenta-
tion, Graph Convolutional Network, Human-in-the-loop.

I. INTRODUCTION

SEGMENTATION of anatomical structures serves as a core
element in a wide spectrum of medical image analysis

applications. Recent advances in deep learning research have
significantly boosted the accuracy of medical image segmen-
tation. However, without abundant pixel-level labels, the state-
of-the-art segmentation methods [7], [12], [18], [31], [38],
[40] cannot achieve their optimal performance [35]. Anno-
tating segmentation masks for medical images is extremely
time-consuming and requires specialized expertise on human
anatomy and its variations. As a result, prompt solutions
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Fig. 1. An overview of CTN. CTN could learn to segment the anatom-
ical structure accurately from only one exemplar and a set of unlabeled
images. In contrast, fully supervised methods such as DeepLab [7] will
fail when training with insufficient labeled images.

are demanded to train an accurate segmentation model with
limited labeled data.

One-/few-shot image segmentation methods have been stud-
ied in recent years aiming to reduce the dependency on large
labeled data. Knowledge transfer is widely adopted for one-
/few-shot segmentation of natural images [13], [29], [33],
[52]. These methods leverage on external labeled datasets
(e.g., PASCAL VOC [14] and MS-COCO [44]) to learn
general knowledge of segmentation and is able to transfer the
knowledge to object categories given a small labeled support
set. Although the object category to be segmented is not seen
during training, a large labeled dataset of diversified objects is
still required. In the medical image domain, especially plain
X-ray, such a labeled dataset is still not available yet. More
important, there is still a significant accuracy gap between
existing one-/few-shot methods and fully supervised ones.

In this work, we propose an annotation-efficient anatomical
structure segmentation method, termed Contour Transformer
Network (CTN). Our work is inspired by the human an-
notator’s capability of learning segmentation of anatomical
structure from one or very few exemplars. This is achieved
by understanding the shape and appearance traits of the target
object from the exemplars and actively looking for objects
with similar traits in new images. To mimic this behavior,
we propose a semi-supervised learning approach that exploits
the shape and appearance similarities of the target object
between labeled and unlabeled images to train a segmentation
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model. As a result, CTN is able to learn segmentation from
one labeled exemplar and a set of unlabeled images without
dependency on external labeled datasets (Fig. 1).

Owing to the inherent regularized nature of anatomical
structures, the same anatomy in different (X-ray) images may
share common features or properties, such as the anatom-
ical structure’s shape, appearance and gradients along the
structural object boundary. Although different images are not
directly comparable, we can compare their common features
only and use the exemplar segmentation to guide other un-
labeled images partially, thus making CTN trainable in a
one-shot setting. Specifically, we formulate the segmentation
problem as learning a contour evolution behavior modeled
by a cascaded graph convolutional network (GCN). Three
differentiable contour-based loss functions namely contour
perceptual loss, contour bending loss and edge loss are pro-
posed to describe the common features of appearance, shape
and edge response, respectively. For each unlabeled image,
CTN takes the exemplar contour as an initialization, then
gradually evolves it under the guidance from the three losses.
We evaluated CTN on four X-ray image segmentation tasks
and demonstrated that it significantly outperforms previous
one-shot segmentation methods and performs competitively
when compared to fully supervised methods.

An efficient human-in-the-loop mechanism is a compelling
feature for one-/few-shot segmentation in applications de-
manding extreme precision, e.g., measuring the joint space in
X-rays. However, existing one-/few-shot methods often lack
such a mechanism, leaving an accuracy gap that renders them
unfit for many accuracy-critical applications. In contrast, CTN
has a native human-in-the-loop mechanism that allows its
performance to be improved by learning from annotation-
efficient corrections. Namely, we format manual corrections as
partial contours where users need to only redraw incorrectly
segmented parts and leave correct parts untouched. These
partial contour annotations can be naturally incorporated back
into the training via an additional Chamfer loss [2]. We
demonstrate that with minimum human-in-the-loop feedback,
CTN can outperform fully supervised methods on all four X-
ray datasets evaluated.

In summary, our contributions are four-fold: 1) We propose
CTN, a one-shot anatomical structure segmentation method
that can be trained using one exemplar and a set of unlabeled
images, without depending on external labeled data. 2) We
propose two new differentiable loss functions contour percep-
tual loss and contour bending loss, plus the existing edge loss,
to enable GCNs to integrate anatomical priors of appearance,
shape and gradient, respectively. 3) We design a human-
in-the-loop mechanism to allow CTN to utilize additional
manual labels with low annotation cost. 4) We demonstrate
on four datasets that CTN achieves the state-of-the-art one-
shot segmentation results, i.e., it performs competitively when
compared to fully supervised alternatives and outperforms
them with minimal human-in-the-loop feedback.

A preliminary version of this work has been published
in a conference proceeding [47]. In this paper, we made
the following extensions: 1) we add evaluations on a new
dataset of hip X-ray images and provide more result analysis

and discussion; 2) We conduct new experiments to further
analyze the behavior of the proposed method, including eval-
uations with more unlabeled images, different loss weights
and different exemplar images, analysis on failure and corner
cases; 3) We add more comprehensive discussion on the
relationship/comparison between our work and related work,
more detailed technical description of the proposed method
and in-depth discussion of the limitations and our future work.

A. Related Work

1) Non-learning-based segmentation: Classic segmentation
methods include solutions based on directly optimizing a pre-
defined energy function. Well known examples include level-
set [10], active contour model (ACM) [23], graph-cut [4],
random walker [16] and their variants [5], [6], [28]. Although
classic methods have limited performance and are no longer
state-of-the-art, their essential concepts and philosophy re-
main insightful. We adopt the contour evolution scheme from
ACM by representing segmentation using contours. Instead of
optimizing the gradient-based energy function on individual
images to obtain a segmentation, we optimize compound
losses concerning shape, appearance, and gradient on the
whole training set to learn a contour evolution policy.

Atlas and multi-atlas methods can also perform segmen-
tation task given only one or a few examples [1], [9], [21].
However, the required image registration is a challenging task
by itself [30], and inter-subject image appearance variance can
lead to inaccurate registration and segmentation [53].

2) Supervised segmentation: State-of-the-art supervised
learning based segmentation methods are predominantly us-
ing deep learning, specifically fully convolutional network
(FCN) [27] and its variants [7], [12], [31], [40]. These methods
follow a per-pixel classification framework, where each pixel
is classified individually by the deep neural network. Lacking
constraints from a global structure, deep learning segmentation
methods typically require a large number of labeled images
to be trained effectively. When training data quantities are
insufficient, the performance tends to degrade significantly, as
shown in Fig. 1.

Incorporating anatomical priors into neural network training
has been proven useful in recent studies. [41] employs a
shape regularization autoencoder in a segmentation network to
constrain the prediction to follow a learned shape distribution.
[25] takes a shape template as an additional input channel and
deforms it to match the underlying structure through a spatial
transformer network. While these methods exploit shape prior
to improve segmentation robustness, they still require a large
number of labeled images. In contrast, CTN exploits the shape
and appearance commonality between labeled and unlabeled
images to achieve one-shot segmentation.

Learning-based ACMs have also been studied to segment a
variety of objects including heart [32], [46], blood vessel [17]
and building [17], [37]. These methods incorporate deep
learning and ACM by learning the ACM energy terms [37]
or evolution directions [32], constructing a ACM-inspired
network architecture [17] and loss [46]. While CTN also
learns the contour evolution policy, it differs from [32] by
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Fig. 2. Contour Transformer Network. CTN is trained to fit a contour to the object boundary by learning from one exemplar. In training, it takes a
labeled exemplar and a set of unlabeled images as input. After going through a CNN encoder and five GCN contour evolution blocks, it outputs the
predicted contour. We train the network using three one-shot losses (i.e., contour perceptual loss, contour bending loss and edge loss), aiming to
let the predicted contour have similar contour features with the exemplar.

introducing novel losses to support one-shot learning and
employs GCN to allow effective information exchange along
the contour.

3) One-/few-shot segmentation: One-/few-shot segmenta-
tion methods aim to segment objects of a new category
learned from a small support set of labeled examples [50].
Existing works on natural images [13], [29], [33], [52] mostly
leverage the pre-training on a large and comprehensive anno-
tated dataset like MS-COCO [44]. This condition renders the
above approach inapplicable to the medical image domain,
where such equivalent large labeled datasets simply do not
exist, especially when considering a collection of specialized
anatomical structure and imaging modality to be addressed.

Data augmentation is another common approach to solve
this problem in medical imaging. Various generative models
have been used in recent works to generate synthetic training
data, such as variational autoencoders [11], generative adver-
sarial networks [36], [43] and transformation networks [53]. A
comprehensive survey of using imperfect datasets in medical
image segmentation can be found in [35]. Zhao et al. [53]
propose an approach to model both spatial and appearance
transformations between images in the entire dataset, and
synthesize images with the learned transformations for training
segmentation models. Our work is partially inspired by the
same motivation, but instead of learning a data augmentation
model, we exploit the inherent regularized nature of anatomi-
cal structures, using one exemplar to guide the segmentation.

II. METHOD

A. Overview
The problem of anatomical structure segmentation can be

decomposed into two steps: ROI (Region of Interest) detection;

and ROI segmentation. ROI detection can be achieved via
landmark detection and has been well-studied in past liter-
ature [8], [40], [45], [51], so we focus on achieving very high
segmentation accuracy by taking the detected ROI (with noise
and errors) as input images.

The training pipeline of CTN is illustrated in Fig. 2. Our task
is to learn an segmentation model of an anatomical structure
from a set of unlabeled images {I} and an exemplar image
IE with its segmentation CE of the target structure. We model
each segmentation as a contour, represented by a fixed number
of evenly spaced vertices, C = {p1,p2, . . . ,pN}. For each
unlabeled image I , its contour C is initialized by placing the
exemplar contour CE at the center of the image. CTN models
the contour evolution policy that displaces the initial contour
C to the boundary of the target structure in I . It can be written
as:

Fθ(IE , CE , I, C) = ∆C (1)

where Fθ denotes the CTN with weights θ. It takes the
exemplar and the target image as input, and outputs estimated
offsets of contour vertices.

Due to the lack of labels on I , fully supervised losses
cannot be used to train CTN. Here, we exploit the advantage
of modeling segmentation as contour, i.e., it provides natural
representations of the segmentation’s boundary and shape. In
particular, instead of comparing model predictions with ground
truth as in a fully supervised setting, we compare C with
the exemplar contour CE , by measuring the dissimilarities
between their shapes and the local image patterns along with
them. This is motivated by the insight that the correct segmen-
tation in the target image should be similar to the exemplar
contour in its overall shape, as well as local image appearance
patterns of corresponding vertices. As a side benefit, the
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Fig. 3. Network Architecture of GCN blocks. CTN uses five cascaded GCN blocks to model the contour evolution behavior. They take image
features along the contour and an adjacency matrix that represents vertex connections as input, and predict point-wise offsets to update the contour.
Their architectures are identical, but weights are not shared.

predicted contours of CTN are naturally corresponded to the
exemplar contour.

We propose two new losses to measure the shape and
appearance dissimilarities: namely contour perceptual loss,
denoted as Lperc, and contour bending loss, denoted as Lbend.
In addition, we employ the classic gradient-based loss, denoted
as Ledge, to further drive the contour to edges. Details of these
losses will be described in Section II-C. CTN is trained by
minimizing weighted combination of the three losses:

min
θ

∑
{I}

λ1 · Lperc + λ2 · Lbend + λ3 · Ledge (2)

where λ1, λ2, λ3 are weighting factors of the three losses. An
illustration of the training process of CTN is shown in Fig. 2.

These losses imitate the human’s behavior in learning
contouring from one exemplar, i.e., drawing new contours
by referring to the exemplar to compare shapes and local
appearances. Another key insight is that although these losses
can be used in an ACM setting (where the contour vertices are
directly optimized to minimize the energy), training CTN on
aggregating over the entire unlabeled dataset is robust, stable
and can inhibit the boundary leaking issue on individual cases
often encountered by ACM.

B. Network architecture
Following [26], we use a CNN-GCN architecture to model

contour evolution. As shown in Fig. 2, CTN consists of two
parts: an image encoding CNN block and subsequent cascaded
contour evolution GCN blocks. ResNet-50 [19] is employed as
the backbone of the image encoding block. It takes the target
image as input and outputs a feature map encoding local image
appearances, denoted as:

f = Fcnn(I). (3)

All contour evolution blocks have the same multi-layer
GCN structure, although weights are not shared. The GCN

takes the contour graph with vertex features as input, denoted
as G = (C,E,Q), where C denotes the contour vertices, E
denotes the connectivity, and Q denotes the vertex features.
Each vertex in the contour is connected to four neighboring
vertices, two on each side. The vertex features are extracted
from the feature map f at vertex locations via bilinear inter-
polation, which can be written as:

Q = {f(p)}p∈C (4)

where f(p) denotes the result of bilinear interpolation of f at
location p.

Five GCN blocks are cascaded to evolve the contour. The
k-th block takes the graph Gk = (Ck, E,Qk) as input, and
outputs offsets of the contour vertices:

Ck+1 = Ck + F k
gcn(Ck, E,Qk). (5)

The contour is initialized using the exemplar contour, C0 =
CE , and the output of the last contour evolution block is the
final output.

The architecture of GCN blocks is shown in Fig 3. Each
GCN block consists of 2 graph convolutional (GraphConv)
layers [24], 6 graph residual convolutional (GraphResConv)
layers [48] and 1 fully connected (FC) layer. The first Graph-
Conv layer and all GraphResConv layers have 256 channels.
The last GraphConv layer has 32 channels. The FC layer has
2 channels outputting the offsets on x and y axis, respectively.

C. One-shot training losses
1) Contour perceptual loss: We propose a contour percep-

tual loss to measure the dissimilarity between the visual
patterns of the exemplar contour CE on the exemplar image
IE and the predicted contour C on the target image I . Partially
enlightened by the perceptual loss [22] developed for image
super-resolution, which measures image perceptual similarities
in the feature space of VGG-Net [34], we measure contour
perceptual similarities in the graph feature space. In particular,
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graph features are extracted from the VGG-16 feature maps
of the two images along the two contours (similar to Eq. 4),
and their L1 distance is calculated as the contour perceptual
loss:

Lperc =
∑

i=1,...,N

‖P (pi)− PE(p′i)‖1 (6)

where pi ∈ C, p′i ∈ CE , and P and PE denote the VGG-
16 features of I and IE , respectively. Following [22], we
use features at the layers of relu1 2, relu2 2, relu3 3,
and relu4 3 in VGG-16. We first downscale the contour
vertices using the downsample factor of each feature map,
and then sample contour features from feature maps using
bilinear interpolation, and last the contour features of four
layers are concatenated for comparison. The VGG-16 weights
are pretrained on ImageNet [42].

Instead of using L2 distance found in the original perceptual
loss formulation [22], we employ L1 distance since it empiri-
cally performed better in our experiments. Because of the in-
evitable appearance variations across images, we hypothesize
that the similarity representation between pairs of local image
patterns is often limited according to certain aspects, e.g.,
specific texture, context, or shape features. Given that different
channels of VGG-16 features capture different characteristics
of local image patterns, a distance metric learning with mod-
eling flexibility to select which salient features to match is
more appropriate. The sparsity-inducing nature of L1 distance
definition provides additional “selection” mechanism over L2,
which may explain the improved performance observed.

Using the contour perceptual loss to measure appearance
similarity between contours has a few advantages: 1) Since
VGG-16 network features can capture the image pattern of a
neighboring area with spatial contexts (i.e., network receptive
field), the contour perceptual loss enjoys a relatively large
capturing range (i.e., the convex region around the minimum),
making the CTN training optimization easier; 2) The backbone
VGG-16 model is trained on ImageNet [42] for classification
tasks, so that its learned features are more sensitive to under-
lying structure and less sensitive to noises and illumination
variations, which improves the robustness of CTN training.

2) Contour bending loss: If we operate under the assump-
tion that an exemplar contour is broadly informative to other
data samples, then it should be beneficial to use the exemplar
shape to ground any predictions on such other samples. To
this end, we propose a contour bending loss to measure the
shape dissimilarity between contours. The loss is calculated
as the bending energy of the TPS warping [3] that maps
CE to C. It is worth noting that TPS warping achieves the
minimum bending energy among all warpings that map CE

to C. Since bending energy measures the magnitude of the
2nd order derivatives of the warping, the contour bending loss
penalizes more on local and acute shape changes, which are
often associated with mis-segmentation.

Given a predicted contour C, the TPS bending energy can

(a) (b) (c) (d)

Human
correction

Fig. 4. Human-in-the-loop. Given a red predicted contour (a), the
annotator corrects its wrong parts with green curves (b). For each
corrected contour segment, we find two points in the predicted contour,
closest to its start and end (c), then each predicted point between the
two points are assigned to the closest corrected point (d). This prevents
the point correspondence to be scattered.

be calculated as follows:

K =
(∥∥p′i − p′j

∥∥2
2
· log

∥∥p′i − p′j
∥∥
2

)
(7)

P = (1,x′,y′) (8)

L =

[
K P

PT 0

]
(9)

where pi = (xi, yi), p′i = (x′i, y
′
i) are points of C and CE , re-

spectively. x′ = {x′1, x′2, . . . , x′N}T , y′ = {y′1, y′2, . . . , y′N}T .
K, P, L are matrices of size N×N , N×3 and (N+3)×(N+
3), respectively. Finally, the TPS bending energy is written as

Lbend = max

[
1

8π
(xTHx + yTHy), 0

]
(10)

where x = {x1, x2, . . . , xN}T , y = {y1, y2, . . . , yN}T , and
H is the N ×N upper left submatrix of L−1 [49].

3) Edge loss: Although the contour perceptual and bending
losses can achieve robust segmentation, they are inherently
insensitive to (very) small segmentation fluctuations, such
as deviations from the correct boundary by a few pixels.
Therefore, in order to obtain desirably high segmentation
accuracies to adequately facilitate the downstream workflows
like rheumatoid arthritis quantification [20], we also employ
an edge loss measuring the image gradient magnitude along
the contour, which attracts the contour toward edges in the
image. The edge loss is written as:

Ledge = − 1

N

∑
p∈C
‖∇I(p)‖2 (11)

where ∇ is the gradient operator.

D. Human-in-the-loop
Learning from one exemplar is based on the assumption that

the anatomical structure has similar boundary features in all
images. It works in most cases, but outliers are inevitable.
To achieve even higher accuracy in testing, sometimes we
need to consider more possibilities in training. To this end, the
proposed CTN offers a natural way to incorporate additional
labeled images with a human-in-the-loop mechanism.
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Fig. 5. Segmentation results of four example images. The boundaries of ground truth segmentations (the green lines) are drawn for comparison.

Assuming a CTN model is trained with one exemplar, we
want to finetune it with more segmentation annotations. We
first run this model on a set of unlabeled images and select
a number of images with wrong predictions as new samples.
Instead of drawing the whole contour from scratch on these
new images, the annotator only needs to draw some partial
contours, in order to correct the wrong prediction (as shown
in Fig. 4(b). The point-wise training of CTN makes it possible
to learn from these partial corrections. This way, we reduce
the labor cost to the minimum.

A partial contour matching loss is proposed to utilize the
partial ground truth contours during the CTN training. Denote
Ĉ as a set of partial contours in image I , each element of
which is an individual contour segment. For each contour
segment Ĉi ∈ Ĉ, we build the point correspondence between
Ĉi and C. For each Ĉi, we find two points in the predicted
contour C that are closest to the start and end points of Ĉi, then
each predicted point between the two points are assigned to
the closest corrected point. Denote the corresponding predicted
contour segment by Ci (Ci ∈ C). We define the distance
between C and Ĉi as the Chamfer distance from Ci to Ĉi:

D(Ĉi, C) =
∑
p∈Ci

min
p̂∈Ĉi

‖p− p̂‖2 (12)

and the partial matching loss of C is defined as:

Lpcm =
1

N

∑
Ĉi∈Ĉ

D(Ĉi, C). (13)

In the human-in-the-loop scenario, we combine all losses to
train the CTN, and rewrite the Eq. 2 as:

min
θ

∑
{I}

λ1 ·Lperc +λ2 ·Lbend +λ3 ·Ledge +λ4 ·Lpcm (14)

which allows CTN to be trained with fully labeled, partially
labeled and unlabeled images simultaneously and seamlessly.
Whenever new labeled image are available, we can use
Eq. (14) to finetune the existing CTN model.

III. EXPERIMENTS

A. Datasets and experimental settings

1) Datasets: We evaluate our method on four X-ray image
datasets focusing on different anatomical structures of knee,
lung, phalanx and hip, respectively.
• Knee: We randomly selected 212 knee X-ray images

from the Osteoarthritis Initiative (OAI) database 1. Each
knee image is cropped from the original scan with au-
tomatic knee joint detection, and resized to 360 × 360
pixels. The dataset is randomly split into 100 training
and 112 testing images.

• Lung: We use the public JSRT dataset [39] with 247
posterior-anterior chest radiographs, where lung segmen-
tation labels originate from the SCR dataset [15] 2. Left
lung and right lung ROIs are extracted from the image
and resized to 512× 256 pixels. Following [15], the 124
images with odd indices are used for training, and the
123 images with even indices for testing.

• Phalanx: We collected an in-house dataset of hand X-
ray images from patients with rheumatoid arthritis. 202
ROIs of proximal phalanx are extracted from images
automatically based on hand joint detection [20] and
resized to 512×256 pixels. We randomly split the dataset
into 100 training and 102 testing images.

1https://nda.nih.gov/oai/
2https://www.isi.uu.nl/Research/Databases/SCR/

https://nda.nih.gov/oai/
https://www.isi.uu.nl/Research/Databases/SCR/
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TABLE I
PERFORMANCES OF CTN AND EIGHT EXISTING METHODS ON FOUR DATASETS.

Methods
Knee Lung Phalanx Hip Mean

IoU (%) HD (px) IoU (%) HD (px) IoU (%) HD (px) IoU (%) HD (px) IoU(%) HD(px)

Non-learning-
based

MorphACWE [28] 65.89±6.07 54.07±3.77 76.09±6.39 55.35±17.82 74.33±6.49 69.13±10.66 48.05±4.70 94.11±9.90 66.09 68.17
MorphGAC [28] 87.42±1.87 15.78±3.02 70.79±4.16 45.67±6.92 82.15±5.15 24.73±7.21 83.42±4.43 32.20±10.44 80.95 29.60

One-shot
CANet [52] 29.22±3.63 175.86±9.74 56.90±7.09 73.46±12.03 60.90±7.02 67.13±7.09 48.89±16.26 88.39±23.35 48.98 101.21

Brainstorm [53] 90.17±1.72 29.07±5.32 77.13±4.71 43.28±8.38 80.05±5.17 30.30±6.90 82.48±3.18 44.17±9.29 82.46 36.71
CTN (Ours) 97.32±0.67 6.01±1.42 94.75±1.97 12.16±5.87 96.96±1.29 8.19±4.49 97.29±0.72 8.27±3.06 96.58 8.66

Fully
supervised

UNet [31] 96.60±1.61 7.14±4.24 95.38±1.87 12.48±6.40 96.76±1.76 10.10±6.84 96.51±4.22 13.28±14.55 96.31 10.75
DeepLab [7] 97.18±0.67 5.41±2.27 96.18±1.40 10.81±6.26 97.63±0.93 6.52±3.32 97.64±0.72 6.24±2.63 97.16 7.25
HRNet [40] 96.99±0.65 5.18±2.52 95.99±1.39 10.44±6.03 97.47±1.31 7.03±4.43 97.66±2.38 7.57±6.71 97.03 7.56

• Hip: We randomly selected 300 pelvic X-ray images
from the OAI database, 100 for training and 200 for
testing. Each hip image is cropped from the original
scan with automatic landmark detection, and resized to
360× 360 pixels.

On the knee, phalanx and hip datasets, we manually an-
notated the target objects, namely tibia, femur, phalanx and
hip bones, under the guidance of a senior rheumatologist. The
image lists and annotations of the knee and hip datasets are
publicly available 3. For the knee and lung segmentation tasks,
where there are multiple objects to be segmented, we train
separate CTNs to segment the objects.

For every dataset, we selected the most representative image
in the training set as the exemplar image based on the distance
to other images. Specifically, for every image in the training
set, we calculate its distance to all other images in the
ImageNet-trained VGG feature space, which represents the
semantic similarity between the two images. The image with
minimum average distance to other images is selected as the
exemplar.

2) Evaluation metrics: For each segmentation result, we
evaluate segmentation accuracy by IoU and for the corre-
sponding object contour by the Hausdorff distance (HD). For
methods that do not explicitly output object contours, we
extract the external contour of the largest region of each class
from the segmentation mask. On the knee dataset, we report
the average HD of femur and tibia segmentation.

3) Implementation details: The hyper-parameter settings are
N = 1000, λ1 = 1, λ2 = 0.25, λ3 = 0.1, λ4 = 1. The
network is trained using the Adam optimizer with a learning
rate of 1×10−4, a weight decay of 1×10−4 and a batch size
of 12 for 500 epochs. We use the same hyper-parameter setting
in both one-shot training and human-in-the-loop finetuning.

B. Comparison with existing methods
We compare CTN against seven representative methods

from three categories: non-learning-based, one-shot, and fully
supervised segmentation methods. The quantitative results are
reported in Table I and visualizations of segmentation results
are shown in Fig. 5.

3https://github.com/rudylyh/CTN_data

Initial contour Block 1

Block5 (Output)Block 2 Block 3 Block 4

Input GT contour

Fig. 6. Visualization of the contour evolution process. The red
lines are the contours after each GCN block in CTN. It shows how CTN
gradually moves the initial contour to the correct location.

1) Comparison with non-learning-based methods: We
first compare with two non-learning-based methods: Mor-
phACWE [5], [28] and MorphGAC [6], [28] 4. Both of them
are based on ACM, which evolves an initial contour to the
object by minimizing an energy function. We use the exemplar
contour of our method as their initial contours.

The results in Table I show that our method significantly
outperforms both MorphACWE and MorphGAC. Specifically,
on average we achieve 15.63% higher IoU and 20.94 pix-
els less HD than MorphGAC, the better of the two. The
visualizations of segmentation results in Fig. 5 confirm that
these two approaches cannot provide satisfactory segmentation
accuracy, especially when the boundary of such structures is
not clear, e.g., lung segmentation. We posit that the inferior
performance of ACM-based methods is owing to two factors:
1) the gradient-based energy function is not suitable for objects
without clear boundary, 2) optimizing the energy function
on single image often encounters local minima (i.e., causing
segmentation leakage). In contrast, CTN optimizes shape and
appearance-based loss functions on an aggregated of the
unlabeled dataset to achieve high robustness. Fig. 6 shows the

4https://github.com/pmneila/morphsnakes

https://github.com/rudylyh/CTN_data
https://github.com/pmneila/morphsnakes
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Fig. 7. Using different number of human corrections to finetune
the one-shot model. We test the performance of the human-in-the-loop
mechanism with 0, 10%, 25% and 100% corrected training samples,
respectively (“0” means no finetuning). Our performance with 25%
training samples generally outperforms DeepLab using 100% samples.

evolution process of the CTN contour on a phalanx image.
2) Comparison with one-shot methods: We also com-

pare with two representative one-shot segmentation methods:
CANet [52] 5 and Brainstorm [53] 6. CANet is trained on the
PASCAL VOC 2012 dataset and can segment unseen objects
by referring to the support set (the exemplar). Brainstorm
tackles the one-shot segmentation problem by learning both
spatial and appearance transformations between images in a
dataset and further synthesizes image-label pairs to train the
segmentation model. We follow their procedures to process
images in our datasets. For all one-shot methods, including
ours, we use the same exemplar as the one-shot data.

As shown in Table I, CANet achieves only 48.98% IoU on
average. We speculate that the poor performance is caused by
the domain gap between natural images and medical images.
Brainstorm achieves better performances with an average IoU
and HD of 82.46% and 36.71, respectively. This is still
significantly lower than CTN, of which the average IoU and
HD are 96.58% and 8.66, respectively. Fig. 5 shows that while
Brainstorm is able to segment the object’s overall structure, it
has low accuracy on the segmentation boundaries.

3) Comparison with fully supervised methods: We also eval-
uate the performance of three fully supervised methods on
our datasets: UNet [31] 7, DeepLab-v3+ [7] 8 and HRNet-
W18 [40] 9. We train each of them with all available training
data, i.e., 100 knee images, 124 lung images, 100 phalanx
images, and 100 hip images, respectively. Post-processing
procedures are excluded for fair comparison.

CTN trained with only one exemplar performs comparably
with the fully supervised UNet, and slightly falls behind
DeepLab, the best of the baseline methods, by 0.58% in IoU

5https://github.com/icoz69/CaNet
6https://github.com/xamyzhao/brainstorm
7https://github.com/milesial/Pytorch-UNet
8https://github.com/jfzhang95/

pytorch-deeplab-xception
9https://github.com/HRNet/HRNet-Semantic-Segmentation

TABLE II
USING MORE UNLABELED IMAGES IN TRAINING. WE EXPAND THE

TRAINING SET OF KNEE AND PHALANX FROM 100 TO 500 IMAGES TO

EXAMINE OUR METHOD’S ABILITY IN EXPLOITING UNLABELED DATA.
BOTH CASES USE ONLY ONE EXEMPLAR.

Unlabeled
images

Knee Phalanx Hip
IoU(%) HD(px) IoU(%) HD(px) IoU(%) HD(px)

100 97.32 6.01 96.96 8.19 97.29 8.27
500 97.53 5.73 97.33 6.96 97.37 7.97

and 1.41 pixel in HD, respectively. These results suggest that
with only one exemplar, CTN can compete head-to-head with
very strong fully supervised baselines. We note that since
these fully supervised methods predict segmentation labels at
pixel-level, the topology of the segmentation is not guaranteed,
e.g., small isolated lung masks in Fig. 5. In contrast, CTN is
able to retain the topology. Moreover, we will demonstrate in
Section III-C that with minimal human feedback, CTN can
even outperform fully supervised models.

C. Incorporating human corrections

In this section, we validate the effectiveness of the proposed
human-in-the-loop mechanism by simulating manual correc-
tions of wrong segmentation by an annotator. Specifically,
we assume that the annotator tends to correct more severe
errors with higher priority. To simulate this behavior, we
first segment the unlabeled training images using the one-
shot trained model and calculate their HD to the ground-
truth segmentation (which is not used in training). Then, we
select the worst n% images as candidates for correction. For
each predicted contour in these images, we calculate its point-
wise L2 distances to the ground-truth and mark vertices with
distances larger than 3 pixels as errors. We group consecutive
error vertices into segments and use the corresponding ground-
truth vertices as corrections. Under this setting, we conduct
human-in-the-loop training using corrections of 10%, 25% and
100% training images, respectively.

Fig. 7 shows the performances of the original one-shot
model and three human-in-the-loop finetuned models. We
observe that our model consistently improves with more cor-
rections. Specifically, using 10% corrections, the mean IoU is
improved from 96.58% to 97.10% and the mean HD is reduced
from 8.66 to 7.32, respectively. When using 25% corrections,
CTN can outperform DeepLab, (IoUs of 97.38% vs. 97.16%,
and HDs of 6.81 vs. 7.25). With corrections on all training
samples, CTN further reaches an IoU of 97.52% and a HD
of 6.27. We also stress that the effort of our human-in-the-
loop correction of unlabeled training samples is significantly
lower than annotating them from scratch (as required by fully
supervised methods), as only partial corrections are needed.
Thus, these results indicate that on all 4 evaluated tasks, CTN
with the human-in-the-loop mechanism can achieve superior
performance than fully supervised methods and require con-
siderably less annotation effort.

Knowing that human-in-the-loop fine-tuning improves the
overall segmentation performance, we further investigate if

https://github.com/icoz69/CaNet
https://github.com/xamyzhao/brainstorm
https://github.com/milesial/Pytorch-UNet
https://github.com/jfzhang95/pytorch-deeplab-xception
https://github.com/jfzhang95/pytorch-deeplab-xception
https://github.com/HRNet/HRNet-Semantic-Segmentation
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TABLE III
ABLATION STUDY. THE THREE LOSSES OF CTN ARE REMOVED INDIVIDUALLY TO EVALUATED THEIR IMPACTS ON THE SEGMENTATION

PERFORMANCE.

Lperc Lbend Ledge
Knee Lung Phalanx Hip Mean

IoU (%) HD (px) IoU (%) HD (px) IoU (%) HD (px) IoU (%) HD (px) IoU (%) HD (px)
X X 94.62 8.28 87.45 26.51 94.01 15.80 92.90 16.58 92.24 16.79

X X 97.49 5.87 84.93 36.74 94.24 26.13 94.53 13.91 92.80 20.66
X X 94.43 11.90 93.00 16.22 96.45 9.84 96.61 9.92 95.12 11.97
X X X 97.32 6.01 94.74 12.17 96.96 8.19 97.29 8.27 96.58 8.66

the fine-tuned CTN may produce degraded performance on
individual cases compared to the one-shot CTN. On the hip
dataset, we found that on 178 out of 200 testing images, the
IoU improved after fine-tuning using 25% corrections (average
IoU from 97.27% to 98.12%). On the other 22 testing images,
the IoU degraded (average IoU from 97.48% to 97.06%).
Overall, the average IoU of all 200 images increased from
97.3% to 98.0%. The results show that in the majority of
the cases (89%), fine-tuned CTN improves the segmentation
performance by a noticeable IoU gap (0.85%). While in some
cases (11%), the performance degrades, the degradation is on
average smaller (IoU gap 0.42%) than the improvement.

D. Training with more unlabeled data

Another advantage of CTN is that it can utilize more
unlabeled data (which are often easy to obtain) in training
to improve its performance. To evaluate the impact of more
unlabeled data by expanding the unlabeled training sets of
knee, hip and phalanx from 100 images to 500 images, with
the exemplar unchanged. We do not conduct this experiment
on the lung dataset, because there is no additional images
available in the JSRT dataset.

As shown in Table II, by increasing the number of unlabeled
images from 100 to 500, the performance improves on average
by 0.22% in IoU and 0.6 in HD. Among the three datasets,
the improvement on the phalanx dataset is the largest. Phalanx
dataset has larger appearance and shape variations than hip and
knee, since it contains bones from 5 fingers. We hypothesize
that CTN needs more training samples to fully capture the
large appearance and shape variations.

E. Ablation study on the proposed losses

We conduct an ablation experiment to evaluate the effec-
tiveness of the three employed losses, namely the contour
perceptual loss Lperc, the contour bending loss Lbend, and
the edge loss Ledge. The results are summarized in Table III.
The performance of CTN degrades if any loss is removed,
with an average IoU decrease of 4.34%, 3.78%, and 1.46%
for Lperc, Lbend, and Ledge, respectively. This demonstrates
the contributions of all three losses. An exception is the knee
dataset when Lbend is removed. Knee X-ray images share
similar appearance features along the contour so that they can
be segmented robustly with just the contour perceptual loss and
edge loss. Thus, adding contour bending loss leads to slightly
lower performance in this particular scenario, where the IoU

IoU(%) HD(px)
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Fig. 8. Using different loss weights to train CTN on the hip and the
knee datasets. Based on the original setting λ1 = 1, λ2 = 0.25, and
λ3 = 0.1, we change one of them each time and fix the other two.

decreases from 97.49% to 97.32% and the HD increases from
5.87 to 6.01. We note that the changes (0.17% for IoU and 0.14
for HD) are below the standard deviations of CTN on knee
(0.67% for IoU and 1.42 for HD). Despite the exception on
the knee dataset, such a regularization effect by the contour
bending loss is generally desired to alleviate the worst-case
scenarios and is proved useful in the other three datasets.

To further understand the impact of the losses, we analyze
CTN’s sensitivity to the three loss weights, λ1, λ2 and λ3.
Specifically, on both the knee and hip datasets, three exper-
iments are conducted to evaluate the impact of varying the
three loss weights individually while fixing the other two. The
CTN is trained and tested using 5 different values [0.01, 0.1,
0.25, 1, 5] for λ1, λ2 and λ3. The IoUs and HDs obtained
using varying loss weights are reported in Fig. 8. On the
hip dataset, very small and large loss weights in general lead
to degraded performance. On the knee dataset, larger λ1 and
smaller λ2 achieve better performances. We posit that due to
the distinct appearance, knees can be reliably segmented using
the visual patterns (measured by Lperc) only, and strong shape
regularization (measured by Lbend) degrades the performance
by imposing unnecessary shape constraints.

We also compare the performances of CTN using L1 and
L2 distances in the contour perceptual loss (Section II-C.1) on
the hip dataset. The results show that using L2 distance results
in degraded performance compared to using L1 distance,
reporting an IoU of 96.82% (compared to 97.29%) and a HD
of 12.41 (compared to 8.27). We note that the degradation in
HD is more obvious than IoU, hypothetically owing to the
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(a)

(c)

(b)

(d)

Input image CTN result Deeplab result

Fig. 9. Typical failure cases. (a) Intersected boundaries. (b) Acute
shape change. (c) Blurry boundary. (d) Metal implant (this case is not
in the test set). The green curves are the ground truth contours, the
red curves are the predicted contours, and the dashed boxes show the
wrong part of CTN predictions.

forgiving nature of L2 distance to small errors.

F. Analysis on failure cases

In Fig. ??, we show and examine a few typical failure
cases to analyze the performance characteristics of CTN.
Fig. 9(a) is a knee with severe osteoporosis, which significantly
reduces the joint space and makes the tibia and femur bones
overlap. CTN fails to segment the overlapped region properly.
However, DeepLab also produces wrong segmentation on this
challenging case. In Fig 9(b), the acute change of lung shape
differs from the mean shape, and CTN mis-segments this
part and produces a result closer to mean shape. Although
DeepLab also mis-segments the same part, its result is closer
to the ground truth than CTN. Fig. 9(c) is a hip with severe
osteoporosis, similar to Fig. 9(a), where the joint space is
reduced, making the bone boundary less recognizable. On this
case, CTN produces wrong segmentation on the bone bound-
ary affected by the osteoporosis, while DeepLab produces
satisfactory results. Fig. 9(d) shows an extreme case of hip
X-ray with total hip replacement (this case is not in our test
since there is no ground truth segmentation). While there is
no standard for correct segmentation on this particular case,
we observe that the segmentation produced by CTN tends
to follow the mean shape of a normal hip. In comparison,
DeepLab tends to produce segmentation results following the
edges in the image.

TABLE IV
TESTING CTN ON PERTURBED HIP ROIS. WE MANUALLY MODIFY THE

LOCATION OF ROIS WITH OFFSETS ON X-AXIS, Y-AXIS, AND ROTATION.

∆x(px) ∆y(px) ∆θ(◦) IoU (%) HD (px)
0 0 0 97.29 8.27
5 0 0 96.90 8.76
0 5 0 96.91 8.88
0 0 5 96.62 9.79
5 5 5 96.51 10.15

G. Analysis on the behaviors of CTN

1) Robustness to detected ROIs: As a prerequisite of CTN,
ROI detection is an important step to help reduce the contour
searching space. Therefore, the performance of CTN also
depends on the accuracy of ROI detection. To evaluate the
influence of ROI detection, we conduct an experiment to
compare the performances of CTN when using automatic
ROIs and manually perturbed ROIs. Specifically, three offsets
are imposed on the bounding boxes of hip ROIs to perturb
their locations, ∆x, ∆y and ∆θ, denoting the translation on
x-axis and y-axis, and the rotation around the ROI center,
respectively. We randomly generate −5px ≤ ∆x,∆y ≤ 5px
and −5◦ ≤ ∆θ ≤ 5◦ to simulate ROIs produced with certain
landmark detection errors. Note that in our experiment, this
perturbation is added on the automatically detected ROIs,
which already contains errors from the ROI detector. We test
the model trained without ROI perturbation on perturbed ROIs,
to examine CTN’s robustness to ROI localization errors unseen
in the training data. Table IV summarizes the testing results.
With all three perturbations, the IoU dropped by 0.78% and
the HD increased by 1.88 px, indicating that the performance
of CTN can be affected by ROI localization errors. However,
the performance degradation is relatively small, i.e., compa-
rable to the standard deviations (IoU 0.72% and HD 3.06
px), indicating that CTN holds a good robustness against
the perturbations. We evaluated DeepLab under the same
ROI perturbation settings, and observed similar performance
degradation, i.e. IoU by 0.71% and HD by 1.2 px.

2) Impact of the selection of the exemplar image: Since the
exemplar image is the main source of supervision signal, the
selection of the exemplar image may be critical to the gen-
eralizability of CTN. In Section III-A.1, we propose to select
the image with the minimum average VGG distance to other
training images as the exemplar. In this section, we conduct
experiments on the hip dataset to evaluate CTN’s performance
using four randomly selected exemplars and compare them
with the automatically selected exemplar. The five exemplar
images are shown in Fig. 10, and their resulting performances
are reported in Table V. We can observe that the automatically
selected exemplar Fig. 10(a) based on VGG distance results
in better performance than the randomly selected ones. We
also observe that the performance of CTN is not always
correlated with the VGG distance. For example, the exemplar
Fig. 10(d) with larger distance produces a better CTN model
than Fig. 10(e) with smaller distance. We note that even with
randomly selected exemplars, CTN consistently outperforms
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(a) (e)(b) (c) (d)

Fig. 10. Five exemplar images from the hip training set. (a) The exemplar image automatically selected using the proposed method. (b)-(e)
Four randomly selected exemplars.

TABLE V
USING FIVE DIFFERENT EXEMPLARS TO TRAIN CTN ON THE HIP

DATASET. THE AVERAGE VGG DISTANCE IS CALCULATED BY

AVERAGING THE L2 DISTANCES FROM THE EXEMPLAR IMAGE TO ALL

OTHER TRAINING IMAGES IN THE VGG FEATURE SPACE.

Exemplar image Avg. VGG distance IoU(%) HD(px)
Fig. 10(a) 2.98 × 105 97.29 8.27
Fig. 10(b) 3.51 × 105 96.88 9.39
Fig. 10(c) 3.32 × 105 96.08 11.92
Fig. 10(d) 4.83 × 105 96.77 9.36
Fig. 10(e) 3.20 × 105 94.57 15.37

TABLE VI
USING DIFFERENT NUMBERS OF GCN BLOCKS TO TRAIN CTN ON THE

HIP DATASET.

Num. of GCN blocks 1 3 5 7 9
IoU (%) 97.10 97.11 97.29 96.91 96.67
HD (px) 8.51 8.44 8.27 8.88 9.29

previous one-shot segmentation methods, e.g. Brainstorm.
3) Impact of the number of GCN block iterations: In this

section, we evaluate the impact of the number of GCN block
iterations by training and testing the CTN with 1, 3, 5, 7
and 9 GCN block iterations on the hip dataset. The results
of this analysis are summarized in Table VI. It shows that
as the number of GCN blocks increases from 1 to 5, the
performance improves from IoU 97.10% to 97.29% and HD
8.51 px to 8.27 px, respectively. It demonstrates that by
stacking multiple GCN blocks, the later GCN block can
further correct the segmentation errors produced by the earlier
GCN blocks, which is beneficial to the final performance.
However, the performance starts to slightly degrade when
the number of GCN blocks increases over 5. We posit that
the increased number of layers in the CTN caused by the
additional GCN blocks make the network more difficult to
train, which contributes to the performance degradation.

4) Computational efficiency: We analyze the computational
efficiency of CTN and compare it with other learning-based
segmentation methods. Table VII summarizes the number of
parameters, the number of float-point operations (FLOPs) and
frames per second (FPS). All evaluations are conducted on
the hip dataset with a Nvidia GTX 1080Ti GPU. While
the computational efficiency varies significantly among the
evaluated methods (e.g. number of parameters from 1.78M

TABLE VII
MODEL EFFICIENCY OF LEARNING-BASED METHODS. WE COMPARE

THE NUMBER OF PARAMETERS, THE NUMBER OF FLOAT-POINT

OPERATIONS (FLOPS), AND THE INFERENCE FPS OF ALL

LEARNING-BASED METHODS.

Methods # of Params FLOPs FPS
CANet 19.01M 27.42G 20.77

Brainstorm 1.78M 7.55G 15.44
UNet 13.40M 30.65G 28.57

DeepLab 59.34M 22.55G 18.18
HRNet 9.64M 4.67G 9.86
CTN 42.26M 32.99G 15.39

to 59.34M, FLOPs from 4.67G to 32.99G, FPS from 9.86 to
28.57), all methods report sufficient speed (above 9 FPS) for
off-line image analysis tasks. A few methods, including CTN,
measure above 15 FPS, which is the common fluoroscopic
imaging frame rate, showing potential applicability on real-
time image analysis tasks.

IV. DISCUSSION AND CONCLUSION

In this paper, we presented CTN, a one-shot segmentation
method that can be trained using one labeled exemplar and a
set of unlabeled images. We demonstrated that by properly ex-
ploiting the regularized nature of anatomical structures, CTN
trained with one labeled data (exemplar) can compete head-
to-head with fully supervised methods trained with abundant
labeled data. A key assumption of our work is that the same
anatomy have similar shape and visual patterns in different
images. Based on this assumption, CTN employs a semi-
supervised training strategy with losses that measures the
similarity between the segmentation from unlabeled images
and the exemplar. A key difference between CTN and most
existing segmentation methods (one-shot and supervised) is
that CTN models segmentation as contour and learns the con-
tour evolution behavior. Using contour representation makes
it possible to directly compare the shapes of segmentation
results, as well as measure the similarity of visual appearance
along the segmentation boundary. We have shown that shape
similarities can be measured using TPS bending energy of
the two contours and used as training loss, which is sensitive
to acute shape changes and is suitable for imposing shape
regularization to prevent irregular segmentation. Visual pattern
similarities of two contours can be evaluated by comparing
the features of corresponding vertices in the ImageNet trained
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VGG feature space. Since the VGG is trained on ImageNet,
its feature is salient to the structure and insensitive to low
level image variations, which is ideal for comparing the visual
similarity of two segmentation contours.

Section III-D and III-C demonstrate that the performance
of CTN can be further improved in two ways, training
with more unlabeled data and incorporating human-in-the-loop
corrections, respectively. By using more unlabeled training
data, without addition annotation effort, CTN can reach the
performance of the state-of-the-art supervised segmentation
methods (e.g., DeepLab). The human-in-the-loop correction is
high labor cost-effective, i.e., the annotator only needs to draw
the mis-segmented partial contour. As shown in Fig.7, with
human-in-the-loop, CTN can outperform supervised methods
by a large margin, especially on HD. For one-shot learning
methods to be useful in clinical applications, especially the
accuracy demanding ones, the capability to effectively incor-
porate human-in-the-loop corrections to boost performance is
a critical feature. However, most existing one-shot methods
fail to provide such mechanism.

We recognize that CTN also has its limitations. The success
of CTN is achieved by heavily exploiting the assumption
that the target anatomical structure has similar shape and
appearance in different images. If the anatomical structure
has significant difference from the exemplar in shape and/or
appearance (e.g., caused by pathology), the contour bending
loss and contour perceptual loss may provide misinformed
guidance to CTN and we expect the performance of CTN
to degrade. This limitation can be partially addressed by the
human-in-the-loop mechanism with certain manual correction
efforts. Another limitation of CTN is that it can only utilize one
exemplar and does not support few-shot learning scenarios.
This is mainly because the contour bending loss and contour
perceptual loss are calculated pair-wise between the exemplar
and the unlabeled images. Future research could investigate
the extension of CTN to few-shot learning scenario via group-
wise loss calculation. In addition, the extension of CTN to
3D segmentation might prove an important area for future
research. Unlike FCN-based segmentation methods, which can
be directly applied on 3D tasks by using 3D convolutions,
extending the 2D contour-based formulation of CTN to a 3D
surface-based formulation requires is non-trivial and warrants
further investigation.
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